If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2+9t-9=0
a = 8; b = 9; c = -9;
Δ = b2-4ac
Δ = 92-4·8·(-9)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{41}}{2*8}=\frac{-9-3\sqrt{41}}{16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{41}}{2*8}=\frac{-9+3\sqrt{41}}{16} $
| 8x+128=24x+8 | | 4.5×t=40.05 | | 800=20(0.05X)^(1/2)*X^(1/2)v | | 6x-9+3x-29=180 | | 11x-37=28+6x | | 6x+11=4x+-1 | | 4x-2=-7(x-6) | | x(12x-15)(12x-15)=945 | | Y=0.36x+40 | | 4(-7x+1)=-164 | | −42y+33=8y+91 | | 5+u=2 | | 6x-10x+8=-16 | | 7(6x+8)=560 | | 9q^2=-9q | | x/7+1=9 | | 3x/7-x/7=12/7 | | y+7+(3y-17)=180 | | 2y+6=2= | | 23=4(2q-3)+3 | | 1.8b+5.2=13.4 | | 100.3–7.8m=54.7 | | 2^x-1(x-2)^x=768 | | 125m-100m+33,950=35,175-150m | | X-0.07x=456 | | 4n+32=70 | | -50=v/9 | | Y=y-171+171 | | 4•3.14=s+5•3.14 | | y^2-4=y | | -6n+21=12n15 | | 8x-12=-8x-12 |